In order to be in SHM, the restoring force must be proportional to the negative of the displacement. Here we have:

\[F = -mg \sin \theta, \]

which is proportional to \(\sin \theta \) and not to \(\theta \) itself.

However, if the angle is small, \(\sin \theta \approx \theta \).
Therefore, for small angles, we have:

\[F \approx -\frac{mg}{L} x, \]

where

\[x = L \theta. \]

The period and frequency are:

\[T = 2\pi \sqrt{\frac{L}{g}}, \]

\[f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}. \]
The Physical Pendulum

A physical pendulum is any real extended object that oscillates back and forth.

The torque about point O is:

\[\tau = -mg \sin \theta. \]

Substituting into Newton’s second law gives:

\[I \frac{d^2 \theta}{dt^2} = -mg \sin \theta. \]
For small angles, this becomes:

\[
\frac{d^2\theta}{dt^2} + \left(\frac{mgh}{I}\right)\theta = 0,
\]

which is the equation for SHM, with

\[
\theta = \theta_{\text{max}} \cos(\omega t + \phi),
\]

\[
T = 2\pi \sqrt{\frac{I}{mgh}}.
\]
Damped harmonic motion is harmonic motion with a frictional or drag force. If the damping is small, we can treat it as an “envelope” that modifies the undamped oscillation.

\[
F_{\text{damping}} = -bv, \\
ma = -kx - bv.
\]
\[m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = 0. \]

If \(b \) is small, a solution of the form

\[x = Ae^{-\gamma t} \cos \omega' t \]

will work, with

\[\gamma = \frac{b}{2m}, \]

\[\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}. \]
Forced Oscillations; Resonance

The equation of motion for a forced oscillator is:

\[ma = -kx - bv + F_0 \cos \omega t. \]

The solution is:

\[x = A_0 \sin(\omega t + \phi_0), \]

where

\[A_0 = \frac{F_0}{m \sqrt{(\omega^2 - \omega_0^2)^2 + b^2 \omega^2 / m^2}} \]

and

\[\phi_0 = \tan^{-1} \left(\frac{\omega_0^2 - \omega^2}{\omega (b/m)} \right). \]
The width of the resonant peak can be characterized by the Q factor:

$$Q = \frac{m\omega_0}{b}.$$